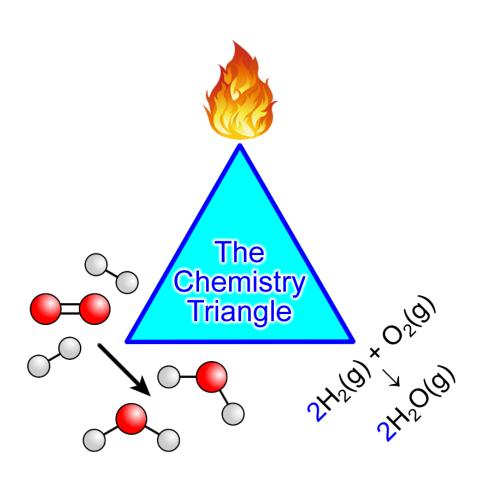


Balancing
Chemical
Equations

Macroscopic (Physical Phenomenon)

- · Concrete and observable.
- · What can be seen, touched and smelt.

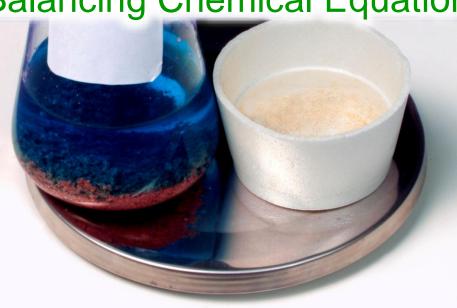


Sub-microscopic (Particles)

- Conceptual explanation.
 - Model drawings and concept diagrams.

Representational (Symbolic)

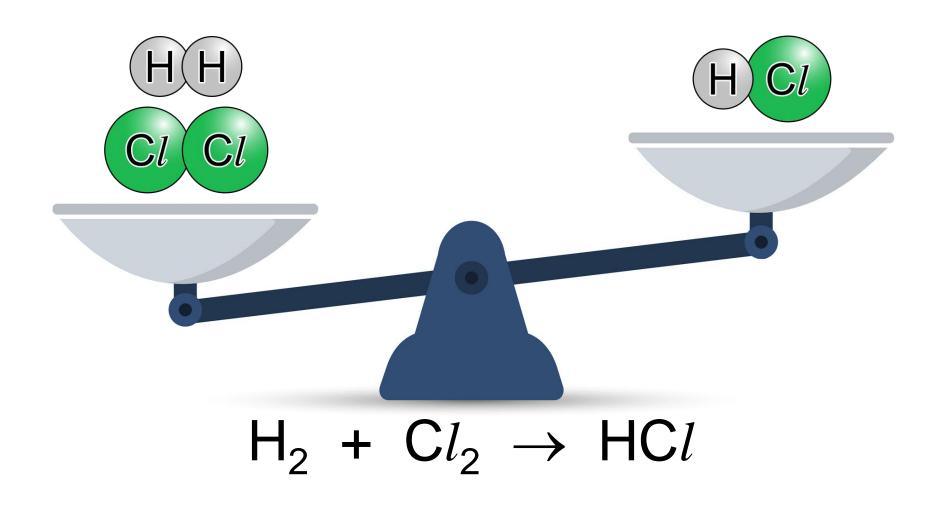
- Show connections between concepts.
- Symbols, formulae, equations and graphs.

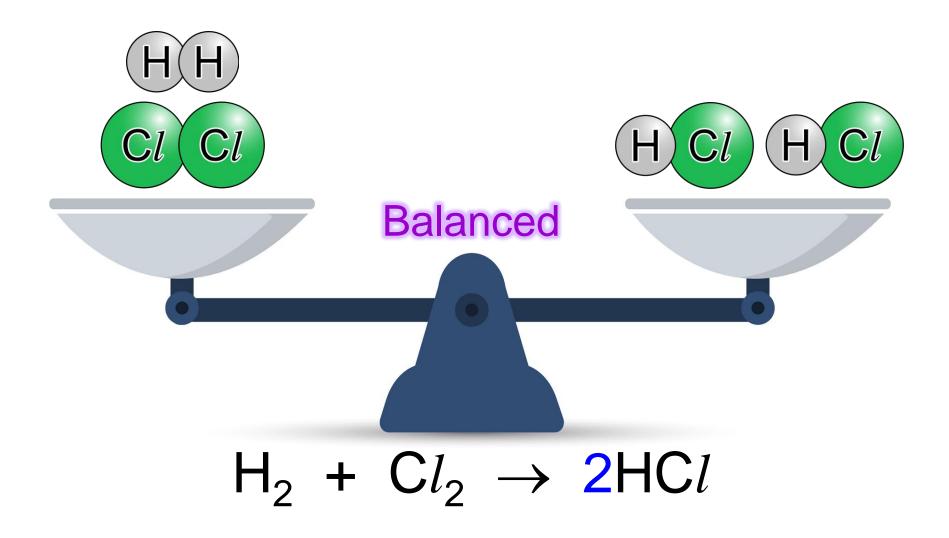


Balancing Chemical Equations

EK-200G Max 200g d=0.01g

EK-200G Max 200g d=0.01g

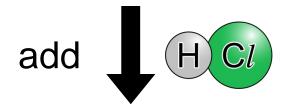

- Matter / mass are conserved during a chemical reaction.
 - The atoms present at the start of the reaction must be present in the same number at the end of the reaction. Atoms cannot vanish or appear out of nowhere.
 - Because of this, chemical equations must be balanced to show that matter is conserved during the reaction.


Example One:

 Hydrogen (H₂) reacts with chlorine (Cl₂) to form hydrogen chloride (HCl).

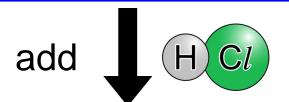
$$H_2 + Cl_2 \rightarrow HCl$$
 (unbalanced)

 Guided by visual representations of the molecules, let us see how the balanced chemical equation for this reaction is written.



$$H_2 + Cl_2 \rightarrow HCl$$
 $2 \times H \& 2 \times Cl$
 $1 \times H \& 1 \times Cl$
 $2 \times H \& 1 \times Cl$
 $1 \times H \& 1 \times Cl$
 1

$$H_2 + Cl_2 \rightarrow HCl$$
 $2 \times H \& 2 \times Cl$
 $1 \times H \& 1 \times Cl$
 $2 \times H \& 1 \times Cl$
 $1 \times H \& 1 \times Cl$
 1


 Can add one hydrogen and one chlorine to this side by adding a single molecule of HCl.

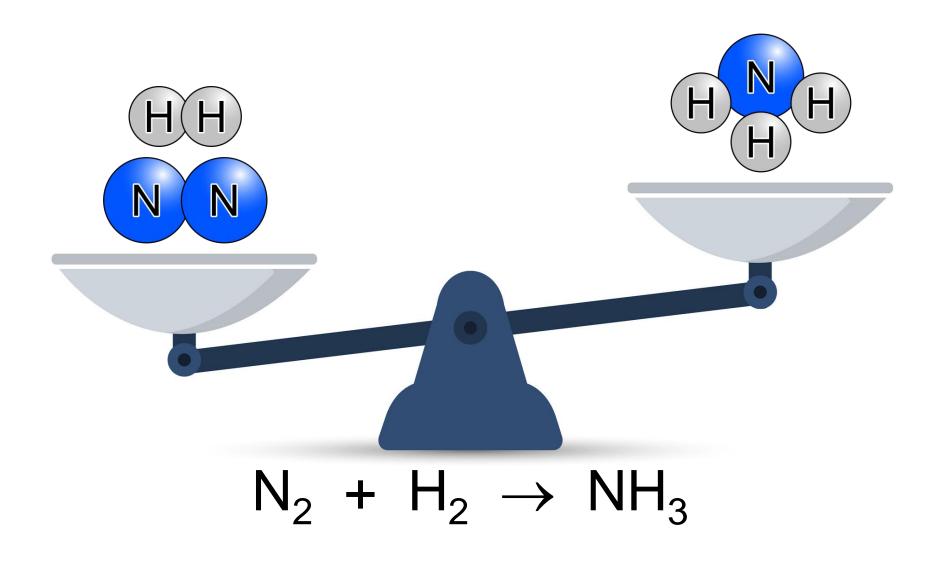
$$H_2 + Cl_2 \rightarrow HCl$$
 $2 \times H \& 2 \times Cl$
 $1 \times H \& 1 \times Cl$
 $2 \times H \& 1 \times Cl$
 $1 \times H \& 1 \times Cl$
 1

Balancing Chemical Equations

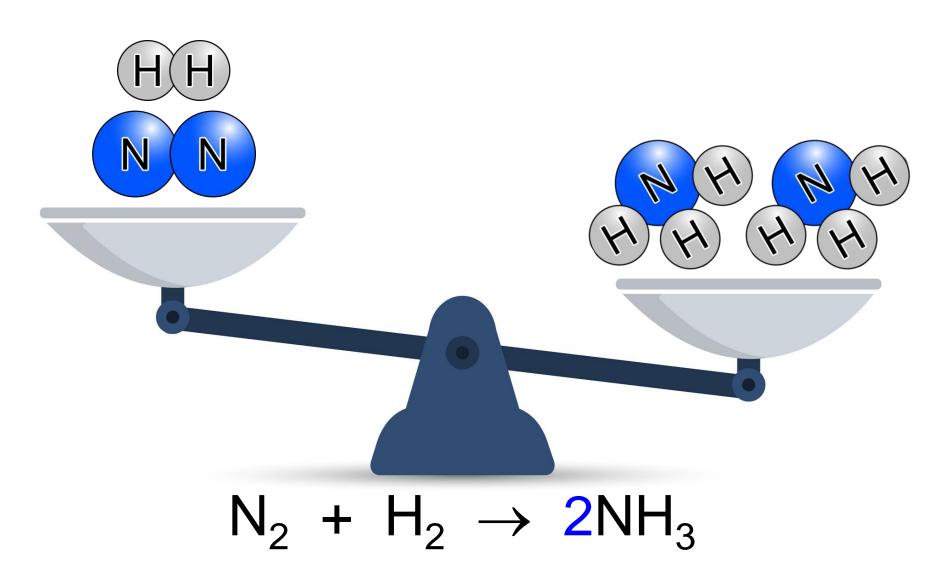
$$H_2 + Cl_2 \rightarrow HCl$$
 $2 \times H \& 2 \times Cl$
 $1 \times H \& 1 \times Cl$
 $2 \times H \& 1 \times Cl$
 $1 \times H \& 1 \times Cl$
 1

$$H_2 + Cl_2 \rightarrow 2HCl$$

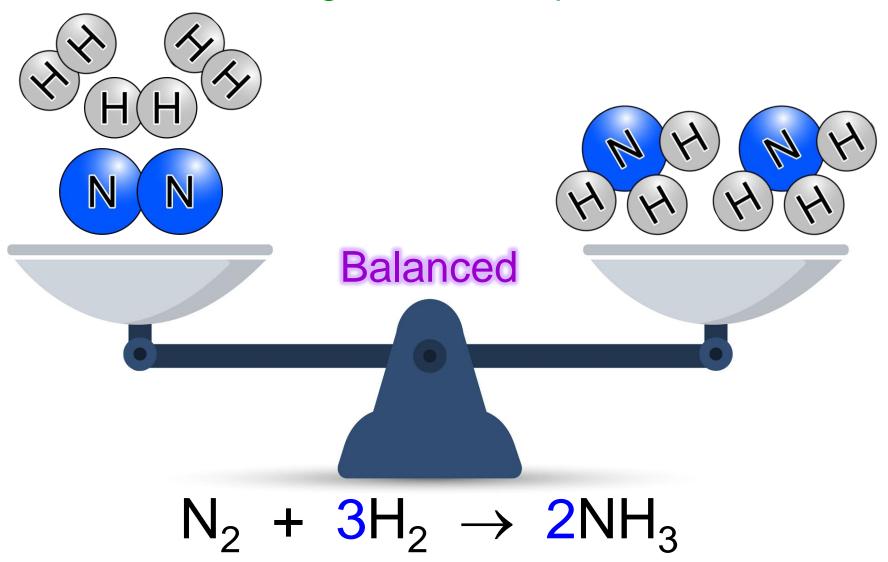
2 × H & 2 × Cl 2 × H & 2 × Cl


Balanced

Example Two:

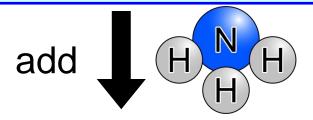

 Nitrogen (N₂) reacts with hydrogen (H₂) to form ammonia (NH₃).

$$N_2 + H_2 \rightarrow NH_3$$
 (unbalanced)


 Guided by visual representations of the molecules, let us see how the balanced chemical equation for this reaction is written.

Balancing Chemical Equations

Balancing Chemical Equations

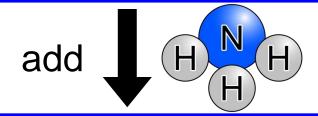

$$N_2 + H_2 \rightarrow NH_3$$

2 × N & 2 × H 1 × N & 3 × H needs 1 more H needs 1 more N

$$N_2 + H_2 \rightarrow NH_3$$

2 × N & 2 × H 1 × N & 3 × H needs 1 more H needs 1 more N

 Difficult to add just one hydrogen to this side because they are bonded together in pairs.


 Can add one nitrogen to this side by adding a single molecule of NH₃.

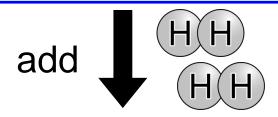
$$N_2 + H_2 \rightarrow NH_3$$

 $2 \times N \& 2 \times H$ $1 \times N \& 3 \times H$
needs 1 more H needs 1 more N

Balancing Chemical Equations

$$N_2 + H_2 \rightarrow NH_3$$

2 × N & 2 × H 1 × N & 3 × H
needs 1 more H needs 1 more N


$$N_2 + H_2 \rightarrow 2NH_3$$

2 × N & 2 × H
2 × N & 6 × H
needs 4 more H

$$N_2 + H_2 \rightarrow 2NH_3$$
 $2 \times N \& 2 \times H$
 $2 \times N \& 6 \times H$
 $2 \times N \& 6 \times H$
 $2 \times N \& 6 \times H$

$$N_2 + H_2 \rightarrow 2NH_3$$

2 × N & 2 × H 2 × N & 6 × H needs 4 more H

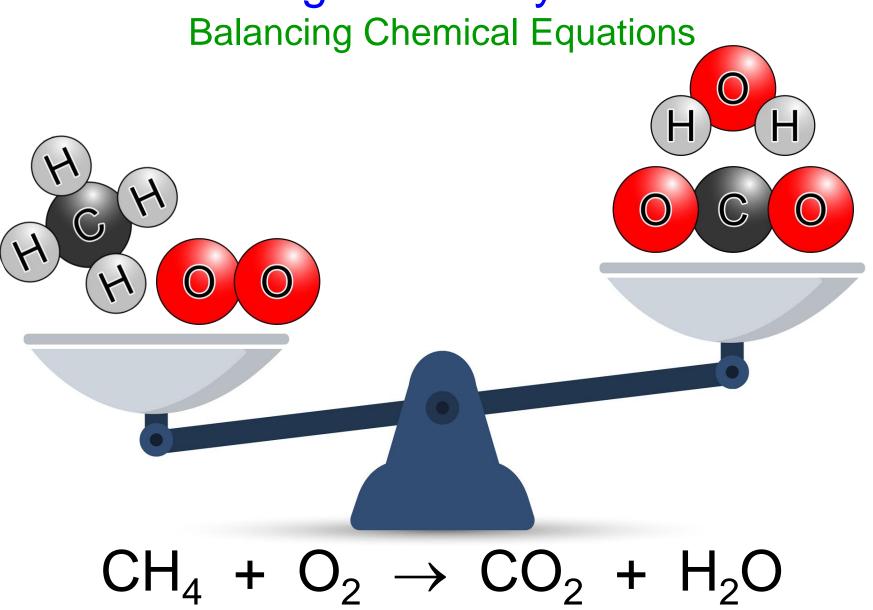
 Can add four hydrogens to this side by adding two molecules of H₂.

$$N_2 + H_2 \rightarrow 2NH_3$$
 $2 \times N \& 2 \times H$
 $2 \times N \& 6 \times H$
 $2 \times N \& 6 \times H$
 $2 \times N \& 6 \times H$

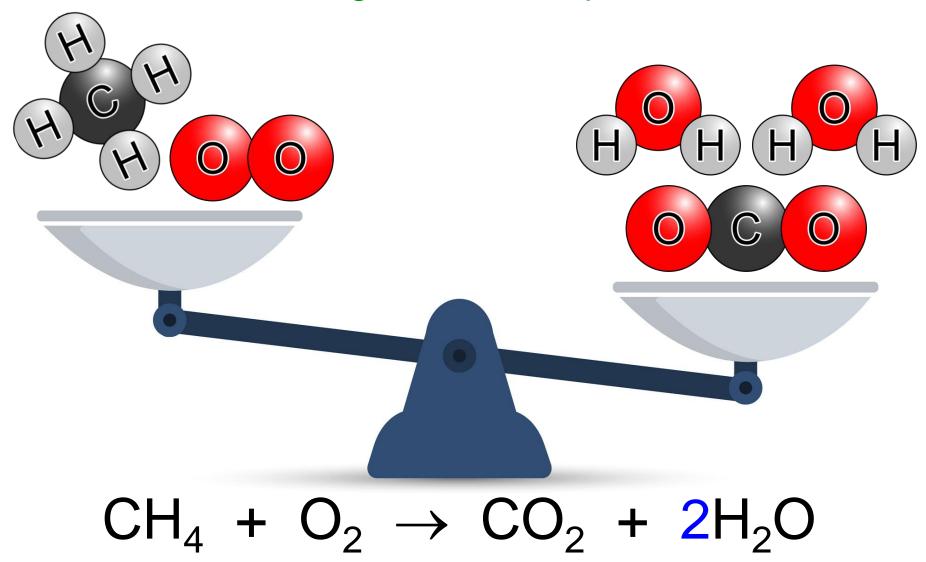
Balancing Chemical Equations

$$N_2 + H_2 \rightarrow 2NH_3$$
 $2 \times N \& 2 \times H$
 $2 \times N \& 6 \times H$
needs 4 more H

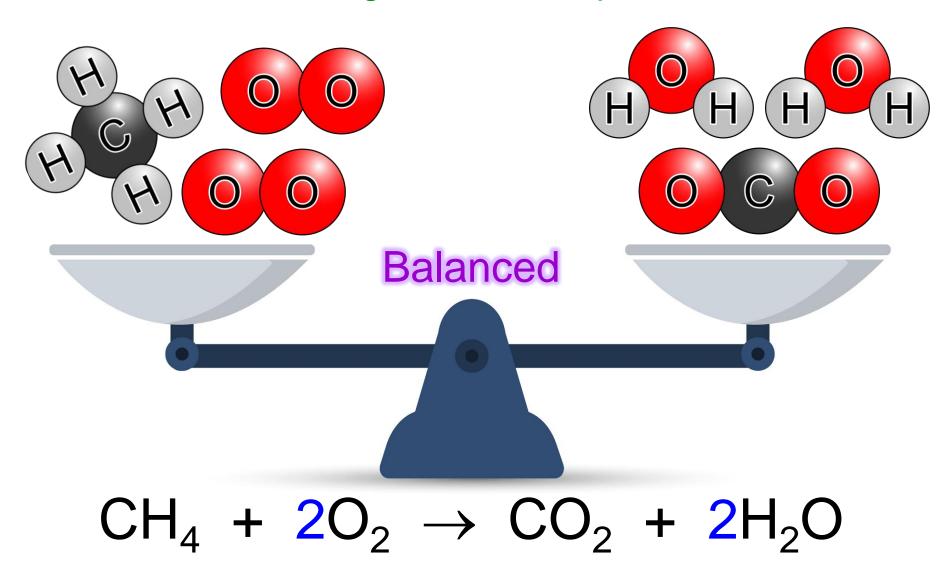
$$N_2 + 3H_2 \rightarrow 2NH_3$$
 $2 \times N & 6 \times H$
 $2 \times N & 6 \times H$


Balanced

Example Three:

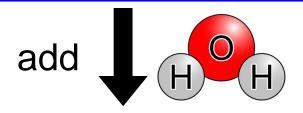

 Methane (CH₄) reacts with oxygen (O₂) to form carbon dioxide (CO₂) and water (H₂O).

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$
 (unbalanced)


 Guided by visual representations of the molecules, let us see how the balanced chemical equation for this reaction is written.

Balancing Chemical Equations

Balancing Chemical Equations



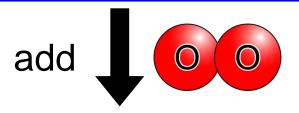
$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$
 $1 \times C \& 4 \times H \& 2 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$
 $1 \times C \& 4 \times H \& 2 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$

 Difficult to add just one oxygen to this side because they are bonded together in pairs. Can add two hydrogens to this side by adding a single molecule of H₂O.

$$\begin{array}{c} CH_4 + O_2 \rightarrow CO_2 + H_2O \\ 1 \times C \& 4 \times H \& 2 \times O \\ \text{needs 1 more O} & 1 \times C \& 2 \times H \& 3 \times O \\ \text{needs 2 more H} \end{array}$$

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$
 $1 \times C \& 4 \times H \& 2 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$
 $1 \times C \& 2 \times H \& 3 \times O$


$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$

 $1 \times C \& 4 \times H \& 2 \times O$

 $1 \times C \& 4 \times H \& 4 \times O$

 $1 \times C \& 4 \times H \& 4 \times O$

$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$
 $1 \times C \& 4 \times H \& 2 \times O$
 $1 \times C \& 4 \times H \& 4 \times O$
needs 2 more O

$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$

 $1 \times C \& 4 \times H \& 2 \times O$

 $1 \times C \& 4 \times H \& 4 \times O$

 $1 \times C \& 4 \times H \& 4 \times O$

 Can add two oxygens to this side by adding a single molecule of O₂.

$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$
 $1 \times C \& 4 \times H \& 2 \times O$
 $1 \times C \& 4 \times H \& 4 \times O$
needs 2 more O

$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$
 $1 \times C \& 4 \times H \& 2 \times O$
 $1 \times C \& 4 \times H \& 4 \times O$
needs 2 more O

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_1 \times C \& 4 \times H \& 4 \times O$$

Balanced

Presentation on
Making Thinking Visible:
Balancing Chemical Equations
by Dr. Chris Slatter

christopher_john_slatter@nygh.edu.sg

Nanyang Girls' High School 2 Linden Drive Singapore 288683

5th April 2024