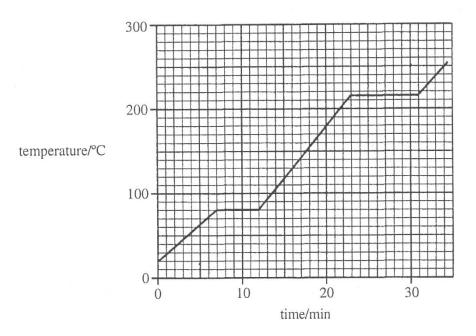


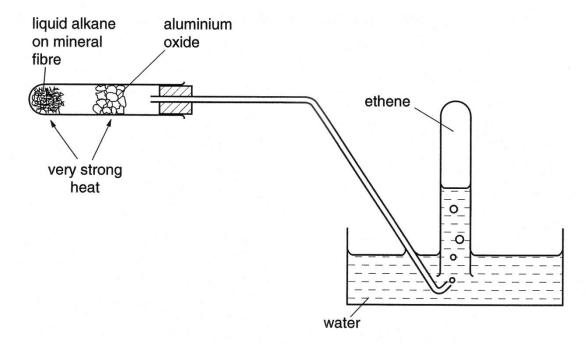
Chem!stry Class:


Name:	 	 	()
ivaille.	 	 	()

Date: / /

Revision Questions for the Secondary 3 Chemistry End-of-year Exam

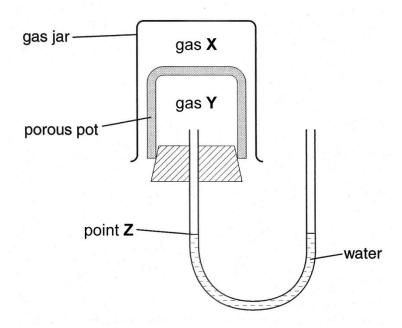
Question 1.


The graph below shows the heating curve for a pure chemical **C**:

a)	What information provided by the graph indicates that chemical C is pure?	
	[1	l mark]
b)	What is the boiling point of chemical C ?	
	[1	I mark]
c)	Describe separation, arrangement and motion of the particles in chemical C at 60°C:	-
	L	l mark]
d)	Use appropriate terms from Kinetic Particle Theory to explain the shape of the graph	as
	chemical C is heated from 150°C to 250°C:	
	[3	marks]

Question 2.

The diagram below shows the apparatus used to prepare and collect a sample of ethene gas:



a)	Name the method by which the ethene gas is being collected in the diagram above:
	[1 mark]
b)	State one property of ethene gas that can be deduced from the information contained in the diagram above:
	[1 mark]
c)	Why is it dangerous to stop heating <u>before</u> removing the delivery tube from the water?
	[1 mark]

d) Ethene has the formula C_2H_4 . Use a dot (\bullet) and cross (\times) diagram to show the arrangement of the electrons, and hence the bonding, in ethene:

Question 3.

The apparatus shown below is used to investigate the diffusion of gases:

State what will happen to the level of the liquid at point **Z** when the following pairs of gases are used in the apparatus shown above:

a)	gas $X = CO$ and gas $Y = N_2$	
	[2 marks]
b)	gas $\mathbf{X} = CO_2$ and gas $\mathbf{Y} = CH_4$	
	[2 marks]
c)	gas $X = Ne$ and gas $Y = SO_2$	

[2 marks]

Question 4.

Clearly and concisely, in four steps, explain how you would separate the following mixture of chemicals, thus obtaining a pure sample of each chemical:

	,	3 1		
		copper(II) sulfate, sand, i	ron filings and naphthalen	е
Step	1:			
Cton				
Step	2:			
Step	3:			
O.Op				
Step	4:			
				[4 marks]
Que	stion 5.			
-		deuterium (symbol D) and		topes of the same
elem	ent. Their atomic	structures are shown below	W:	
	/	*	*	
			~ \ (&	
	h	ydrogen deu	terium tritiu	m
a)	Use the informa	ation in the diagram above	to complete the following	table:
	Symbol:	Name of Particle:	Relative Charge on Particle:	Relative Mass of Particle:
	0		i article.	i ditiole.
	•			
	×			
				[3 marks]
b)	Explain why the	e three atoms are isotopes	of one another:	
				[1 mark]
c)	What is the rela	ative molecular mass of a r	molecule of tritium, formula	a T₂?
_				[1 mark]
d)	Explain why the	e three isotopes have simil	ar chemical properties:	

[1 mark]

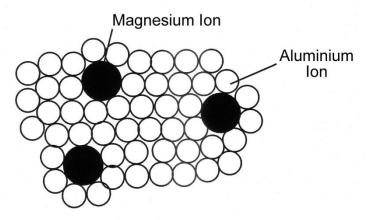
		[1 mark]
	slowly than hydrogen:	
e)	Even though they have similar chemical properties, explain why tritium may rea	ct more

Question 6.

Four isotopes of iron are known to exist. Their mass numbers and percentage abundance are given in the table below:

Isotope	Percentage Abundance
⁵⁴ Fe	5.80%
⁵⁶ Fe	91.6%
⁵⁷ Fe	2.20%
⁵⁸ Fe	0.40%

Calculate the <u>relative atomic mass</u> of this sample of iron based on the data that is provided. Give your answer to three significant figures:


[2 marks]

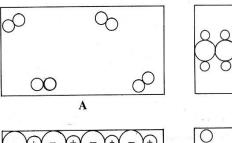
Question 7.

a) Use a dot (•) and cross (×) diagram to show the arrangement of the electrons, and hence the bonding, in magnesium nitride (the compound formed when magnesium reacts with nitrogen):

[2 marks]

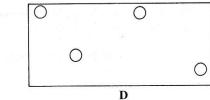
b) Aluminium is a strong metal with a relatively low density. Due to these properties, aluminium is frequently used to make aircraft parts. However, to increase its strength even further, magnesium is added to the aluminium to form an <u>alloy</u>. A diagram of this alloy is given below:

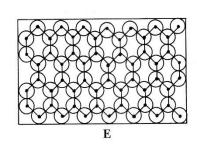
		eference to the diagram, explain why the addition of small quantities of magnesiu ium increases the strength of the aluminium:	
		[2 m	 arks]
Quest	ion 8.		
a)	Clearly	and concisely explain the following observations:	
	i)	Both copper (Cu) and sodium chloride (NaCl) conduct electricity when in the lique (molten) state, but only metallic copper conducts electricity when in the solid state.	ate:
		[4 m	arks]
	ii)	The boiling point of methane (CH ₄) is –164°C while the boiling point of diamond is +4827°C:	(C)
		[4 m	arks


b)

The diagrams on the right show the nature and arrangement of the particles in five different chemicals labelled **A** to **E**.

Choose which diagram; **A**, **B**, **C**, **D** or **E**, best represents the arrangement of the particles in:


i)	Graphite:	
ii)	Oxygen:	
iii)	Xenon:	


iv) Calcium oxide:

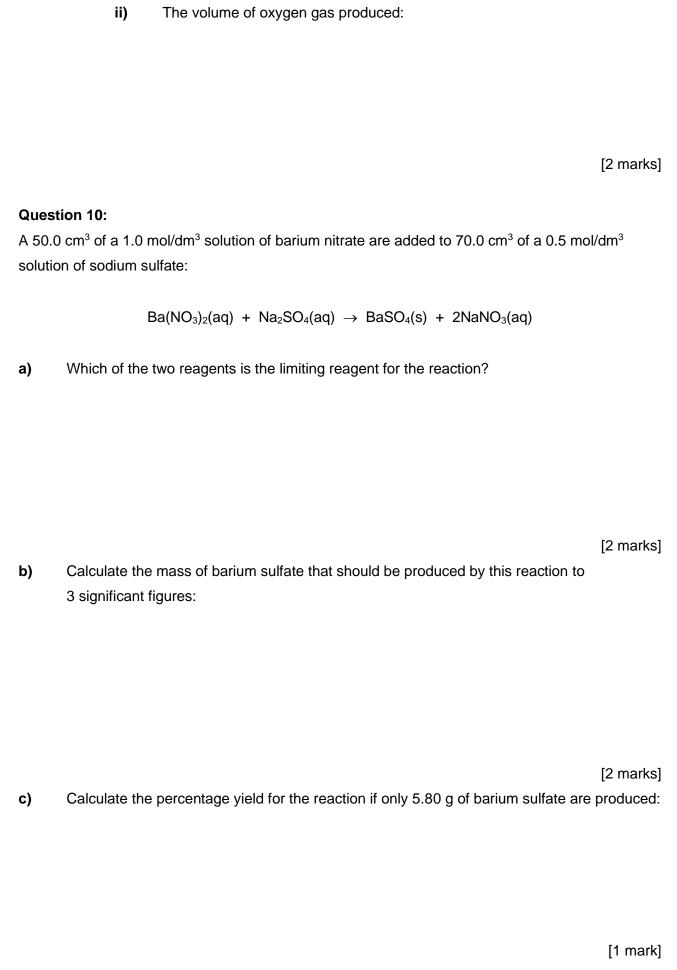
B

[4 marks]

Question 9.

a) Compound **A** ($M_r = 242$) contains 29.75% carbon, 4.13% hydrogen and 66.12% bromine by mass. Show that the molecular formula for **A** is $C_6H_{10}Br_2$:

[2 marks]


b) The compound hydrogen peroxide is rapidly decomposed into water and oxygen gas by the enzyme catalase according to the following balanced chemical equation:

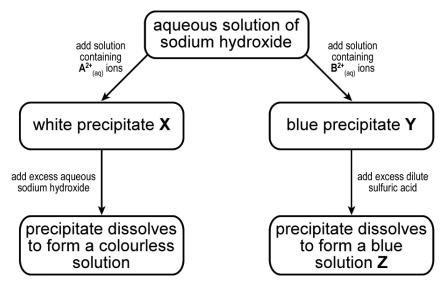
 $hydrogen\ peroxide \rightarrow water\ +\ oxygen$

$$2H_2O_2(I) \ \rightarrow \ 2H_2O(I) \ + \ O_2(g)$$

If the enzyme were to decompose 238 g of hydrogen peroxide, then calculate:

i) The mass of water produced:

Question 11:


The pH scale below shows the positions of five aqueous solutions, $\bf P$, $\bf Q$, $\bf R$, $\bf S$ and $\bf T$, of equal concentration:

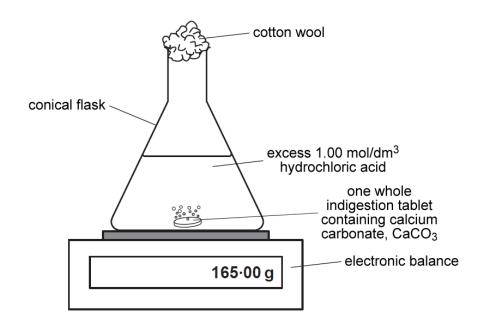
P 	<u> </u>	Q	R 	!	S	Т
pH =	: 1		pH :	= 7		pH = 14
a)	Whic	ch of the aqueous sol	utions is:			
	i)	A weak acid:		Example:		
	ii)	A strong alkali:		Example:		
	iii)	Neutral:		Example:		
	iv)	A strong acid:		Example:		
	v)	A weal alkali:		Example:		
						[5 marks]
b)	Defir	ne the term <i>strong ac</i>	id:			
						[1 mark]
c)		e a balanced chemica oxide:	al equation for the	e reaction betv	veen nitric acid and ca	cium
						[1 mark]
Ques	tion 1	2:				
		 knowledge of acids, b	ases and salts, a	nswer the foll	owing questions:	
J	•				0 1	
a)	Calc	ium hydroxide (slake	d lime) is added i	nto acidic soil	s containing sulfuric ac	id.
	Expl	ain, with a relevant cl	nemical equation,	, why this is do	one by farmers.	
	Cher	mical equation:				
		explanation:				
						[2 marks]

b)	ethanoic acid and 1 mol/dm ³ of dilute hydrochloric acid. After 1 minute, there was more gas collected from the reaction of magnesium with dilute hydrochloric acid. Explain the			
	observation	using the relevant chemical terms.		
		[2 marks]	
c)		g on an ammeter, which gives an indication of a solution's electrical conductivity	/,	
	•	rops to zero when silver sulfate is slowly added to 50 cm ³ of aqueous barium explain the observation.		
		[2 mark	s]	
0	otion 12			
	stion 13. rly describe b	ow you would prepare a pure, dry sample of copper(II) nitrate in the laboratory.		
a)	Reagents (
•				
		[1 mar	k]	
b)	Balanced o	hemical equation for the reaction:		
		[1 mar	k]	
c)	Step-by-ste	ep description of the procedure:		
,	Step 1:			
	Step 2:			
	-			
	Step 3:		••	
	Step 4:		••	
	C.OP			
		[4 mark	s]	

Question 14.

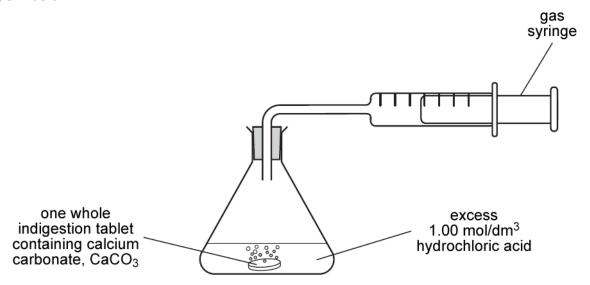
The diagram below shows some of the properties and reactions of the ions A^{2+} and B^{2+} , and substances X, Y and Z.

a)	Sugg	est identities for the ions A ²⁺ and B ²⁺ , and substances X, Y and Z.	
	A ²⁺		
	B ²⁺		
	X		
	Υ		
	Z		
			[5 marks]
b)	Write	the ionic equation to show the formation of the blue precipitate Y.	
			[1 mark]
c)	•	ain how sodium hydroxide solution can be used to distinguish between a solution an iron(II) compound and a solution containing an iron(III) compound.	ıtion
			[1 mark]


Question 15.

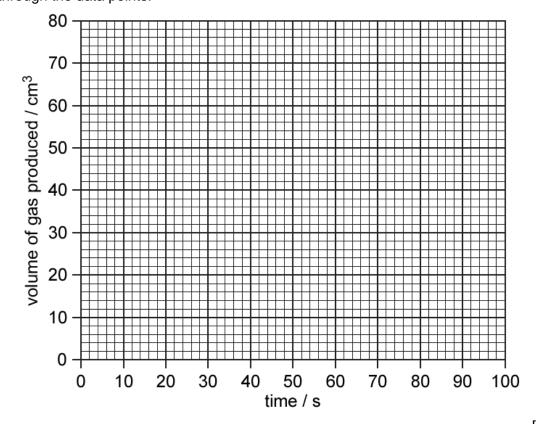
Indigestion tablets reduce the symptoms of heartburn by neutralizing excess hydrochloric acid in the stomach. Indigestion tablets contain calcium carbonate, CaCO₃, as the active ingredient.

a)	Write a balanced chemical equation for the reaction between calcium	
	carbonate and dilute hydrochloric acid.	
	[1 mark	k]


One brand of indigestion tablet claimed to offer "rapid relief from indigestion". To investigate this claim, a student performed **two** different experiments to determine how fast one whole indigestion tablet reacted with an excess of 1.00 mol/dm³ hydrochloric acid.

The apparatus and reagents that the student used for the **first** experiment are shown in the diagram below.

b)	Explain the function of the cotton wool in the experiment shown above.
	[1 mark]
c)	State how the mass reading on the electronic balance will change during the course of the reaction.
	[1 mark]


The apparatus and reagents that the student used for the **second** experiment are shown in the diagram below.

The student measured the volume of gas produced at ten second intervals. Her results are recorded in the table shown below.

Time / s	0	10	20	30	40	50	60	70
Volume of gas produced / cm ³	0	20	32	Х	50	52	53	53

d) Plot the student's data on the graph paper provided below and draw a smooth curve through the data points.

e)	Using	your graph, predict the volume of gas produced at 30 seconds.	
		[1	mark]
f)		e graph paper, sketch the graph of the results you expect the student to obtain if ted the experiment using:	f she
	i)	Excess hydrochloric acid of concentration 0.500 mol/dm³. Clearly label this line [1	e " A ". mark]
	ii)	Half of one indigestion tablet that had been crushed into a powder. Clearly labeline "B".	el this
		[1	mark]
g)	reaction	your knowledge of collision theory, explain why increasing the temperature of the on by 10 °C will double the rate of the reaction between the indigestion tablet and hydrochloric acid.	d
			narks]

• Scan the QR code below for the answers to this assignment.

http://www.nygh.sg/miscellaneous/sec 3 chem/sec 3 chem ans.pdf

Periodic Table

ts
<u>e</u>
E
Elements
_
f the
_
Ξ
of
0
Š
Table
-
O
ᇹ
riodic
Ē
Per
σ.
0
The

		9						Gro	Group								
-												=	<u> </u>	>	I	IIA	0
							1 H hydrogen										4 He
		Si Circ				7							×	8			2
7	6											11	12	14	16	19	20
<u> </u>	Be											В	O	Z	0	ш	Ne
lithium 3	beryllium 4											boron	carbon	nitrogen 7	oxygen	fluorine	neon 10
23												27		31	- 0000	35.5	40
Na	Mg											Al	Si	Д	S	Cl	A
sodium 11	magnesium 12											aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39	40	45	48	51	25	55	99	26	69	49	65	20	73	75	62	80	8
¥	Ca	Sc	F	>	ర	Mn	Fe	රි	z	Cn	Zu	Ga	Ge	As	Se	Br	궃
potassium 19	n calcium	scandium 2	titanium	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 3.1	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85	ì	89	91	93	96	1	101	103	106	108	12	10		122	128	27	131
8	Š	>	Zr	Q	Mo	Tc	R	뫈	Pd	Ag	8	I	Sn	Sb	Te	-	Xe
rubidium	strontium	yttrium	onium	niobium	molybdenu	technetium		rhodium	palladium	silver	cadmium	mnipui	tin	imony	tellurium	dine	xenon
3/	38	- 1	04	14		54	‡	64	46	4/	φ4	49	n n	10	76	53	94
133	137	139	178	181	184	186	190	192	195	197	201	204	207	509	1	1	1
Cs	Ba	La	士	Ta	>	Re	SO	ī	뀹	Au	Hg	11	Pb	Bi	Po	A	R
caesium 55	barium 56	lanthanum 57 * 7	hafhium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	plog 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
1	1	1	8			9					0.00			8	5		
Ŧ,	_	Ac															
mancium 87	88	89 †															
*58-71	*58-71 Lanthanoid series	d series															
190-103	†90-103 Actinoid series	series															
Control (provide provide provi			25	140	141	41	1	150	152	157	159	162	165	167	169	173	175
				Ce	Ā	PN	Pm		En	PS	Tb	ا ا	유	ப்			Lu
				cerium 58	praseodymium r	neodymium p	romethium 51	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
Key	a a=re	a = relative atomic mass	mass	232	1	238	1	1		1	1	1	1	1	1	1	1
	X ×= at	X = atomic symbol	arc.e	Ħ	Pa)		Pu		C _m	器	ರ	Es		Md		۲
2	- 05	b = proton (atomic) number		thorium	protactinium 04	uranium	ш	plutonium	americium	curium	berkelium 0.7	californium einsteinium		ium	mendelevium	lium	lawrencium
۵	7			20		35		\$	_	200	16	90	88	100	101	102	103