

# **Mole Calculations:** Concentration of Aqueous Solution













• A *solute*, *e.g.* CuSO<sub>4</sub>(s)





• To form a solution, e.g.  $CuSO_4(aq)$ 



How far apart are the ions in a dilute aqueous solution of sodium chloride?



 Consider a 1.00 mol/dm<sup>3</sup> aqueous solution of sodium chloride, NaCl(aq).

• For every 55 molecules of water, there will be one sodium ion, Na<sup>+</sup>(aq), and one chloride ion, C*l*<sup>-</sup>(aq).



 Put another way, a cube of the solution measuring approximately 4 × 4 × 4 water molecules will contain one sodium ion, Na<sup>+</sup>(aq), and one chloride ion, Cl<sup>-</sup>(aq).



 A model representing the approximate distribution of ions in 1.00 mol/dm<sup>3</sup> sodium chloride, NaCl(aq).





 On average, there are 2 – 4 water molecules in between the Na<sup>+</sup>(aq) and Cl<sup>-</sup>(aq) ions.

In what way(s) are liquids and solutions *similar* and *different*?





Higher Order Thinking – Compare and Contrast Liquids and Solutions





Higher Order Thinking – Compare and Contrast Liquids and Solutions



• In a *liquid* and a *solution*, the particles are closely packed together in a random arrangement. The particles can "slip and slide" over each others surface. Both have a fixed volume, but no fixed shape.



Higher Order Thinking – Compare and Contrast Liquids and Solutions

 A *liquid* is a pure substance which cannot be converted into anything more simple by a physical separation technique, *e.g.* distillation.





Higher Order Thinking – Compare and Contrast Liquids and Solutions





Higher Order Thinking – Compare and Contrast Liquids and Solutions



• A solution is a mixture of a solvent and a solute which can be converted into more simple substances by a physical separation technique, *e.g.* distillation.



Higher Order Thinking – Compare and Contrast Liquids and Solutions



 Examples of solutions include NaCl(aq), CuSO<sub>4</sub>(aq), H<sub>2</sub>SO<sub>4</sub>(aq) and NaOH(aq).







Concentration is a measure of the amount of a *solute* dissolved in a *solvent* to make *one unit volume of a solution*. Concentration can be expressed as either:

 grams per decimetre cubed, g / dm<sup>3</sup> or

• moles per decimetre cubed, mol / dm<sup>3</sup>



 In other words, concentration is a measure of how much chemical is dissolved in a certain volume of solvent.



 A *dilute* solution



 In other words, concentration is a measure of how much chemical is dissolved in a certain volume of solvent.



#### A concentrated solution





| concentration<br>in mol / dm <sup>3</sup> = | number of moles<br>of solute                   |
|---------------------------------------------|------------------------------------------------|
|                                             | volume of solution measured in dm <sup>3</sup> |
| concentration<br>in g / dm <sup>3</sup> =   | mass of solute measured in g                   |
|                                             | volume of solution measured in dm <sup>3</sup> |
| concentration<br>in mol / dm <sup>3</sup> = | concentration<br>in g / dm <sup>3</sup>        |
|                                             | relative molecular<br>mass of the solute       |





For example, if 234 g, which is
4.00 mol, of sodium chloride were
dissolved in 2.00 dm<sup>3</sup> of distilled water,
it would have a concentration of:

 $234 \div 2.00 = 117 \text{ g} / \text{dm}^3$ or  $4.00 \div 2.00 = 2.00 \text{ mol} / \text{dm}^3$ 





Most concentration calculations use the unit of moles per decimetre cubed, mol / dm<sup>3</sup>.

Concentration calculations centre around the relationship between three variables:

number of moles

concentration measured in mol / dm<sup>3</sup>
volume measured in cm<sup>3</sup>

moles = concentration  $\times$  volume  $\times$  10<sup>-3</sup> or moles = (concentration  $\times$  volume)  $\div$  1000

• Note:  $\times$  10<sup>-3</sup> or  $\div$  1000 is used to convert a volume in cm<sup>3</sup> into a volume in dm<sup>3</sup>.









**Misconception Alert!** 

 Do not get volume of aqueous solution and volume of gas confused with each other!



**Misconception Alert!** 

 Do not get volume of aqueous solution and volume of gas confused with each other!

• You *cannot* calculate the number of moles of chemical in aqueous solution by dividing the volume of the solution by 24.0 dm<sup>3</sup> or 24 000 cm<sup>3</sup>!



#### • Question 1:

How many moles of sulfuric acid (formula,  $H_2SO_4$ ) are there in 300 cm<sup>3</sup> of a 0.200 mol / dm<sup>3</sup> solution?





 Question 1: How many moles of sulfuric acid (formula, H<sub>2</sub>SO<sub>4</sub>) are there in 300 cm<sup>3</sup> of a 0.200 mol / dm<sup>3</sup> solution?

moles = concentration  $\times$  volume  $\times$  10<sup>-3</sup>

moles =  $0.200 \times 300 \times 10^{-3}$ 

moles of  $H_2SO_4 = 0.0600$  mol





#### • Question 2:

What is the concentration of a solution that contains 0.500 mol of potassium nitrate (formula, KNO<sub>3</sub>) dissolved in 125 cm<sup>3</sup> of distilled water?





#### • Question 2:

What is the concentration of a solution that contains 0.500 mol of potassium nitrate (formula, KNO<sub>3</sub>) dissolved in 125 cm<sup>3</sup> of distilled water?

moles = concentration  $\times$  volume  $\times$  10<sup>-3</sup>

 $\therefore$  concentration = (moles  $\times$  1000)  $\div$  volume

concentration =  $(0.500 \times 1000) \div 125$ 

concentration of  $KNO_3(aq) = 4.00 \text{ mol} / dm^3$ 





#### • Question 3:

What volume of a 0.800 mol /  $dm^3$  solution of iron(III) chloride (formula, FeCl<sub>3</sub>) contains 2.00 mol of the salt?





#### • Question 3:

What volume of a 0.800 mol /  $dm^3$  solution of iron(III) chloride (formula, FeCl<sub>3</sub>) contains 2.00 mol of the salt?

moles = concentration  $\times$  volume  $\times$  10<sup>-3</sup>

 $\therefore$  volume = (moles  $\times$  1000)  $\div$  concentration

volume =  $(2.00 \times 1000) \div 0.800$ 

volume of  $FeCl_3(aq) = 2500 \text{ cm}^3$ 





#### • Question 4:

A 355 cm<sup>3</sup> can of Coca-Cola<sup>®</sup> contains 39.0 g of sugar (formula,  $C_{12}H_{22}O_{11}$ ). Calculate the mole concentration of sugar in the can of Coca-Cola<sup>®</sup>.





#### • Question 4:

A 355 cm<sup>3</sup> can of Coca-Cola<sup>®</sup> contains 39.0 g of sugar (formula,  $C_{12}H_{22}O_{11}$ ). Calculate the mole concentration of sugar in the can of Coca-Cola<sup>®</sup>.

 Step 1: Calculate the relative molecular mass of C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>:





#### • Question 4:

A 355 cm<sup>3</sup> can of Coca-Cola<sup>®</sup> contains 39.0 g of sugar (formula,  $C_{12}H_{22}O_{11}$ ). Calculate the mole concentration of sugar in the can of Coca-Cola<sup>®</sup>.

 Step 1: Calculate the relative molecular mass of C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>:

 $M_r C_{12}H_{22}O_{11} = (12 \times 12) + (22 \times 1) + (11 \times 16) = 342$ 





#### • Question 4:

A 355 cm<sup>3</sup> can of Coca-Cola<sup>®</sup> contains 39.0 g of sugar (formula,  $C_{12}H_{22}O_{11}$ ). Calculate the mole concentration of sugar in the can of Coca-Cola<sup>®</sup>.

 Step 1: Calculate the relative molecular mass of C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>:

 $M_r C_{12}H_{22}O_{11} = (12 \times 12) + (22 \times 1) + (11 \times 16)$ = <u>342</u>

• Step 2: Calculate moles of C<sub>12</sub>H<sub>22</sub>O<sub>11</sub> in 39.0 g:





#### • Question 4:

A 355 cm<sup>3</sup> can of Coca-Cola<sup>®</sup> contains 39.0 g of sugar (formula,  $C_{12}H_{22}O_{11}$ ). Calculate the mole concentration of sugar in the can of Coca-Cola<sup>®</sup>.

 Step 1: Calculate the relative molecular mass of C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>:

 $M_r C_{12}H_{22}O_{11} = (12 \times 12) + (22 \times 1) + (11 \times 16) = 342$ 

• Step 2: Calculate moles of C<sub>12</sub>H<sub>22</sub>O<sub>11</sub> in 39.0 g:

moles of  $C_{12}H_{22}O_{11}$  = mass in grams ÷  $M_r$ = 39.0 ÷ 342 = <u>0.114</u> mol




#### • Question 4:

A 355 cm<sup>3</sup> can of Coca-Cola<sup>®</sup> contains 39.0 g of sugar (formula,  $C_{12}H_{22}O_{11}$ ). Calculate the mole concentration of sugar in the can of Coca-Cola<sup>®</sup>.

• Step 3: Convert the 0.114 mol of  $C_{12}H_{22}O_{11}$  per 355 cm<sup>3</sup> into mol / dm<sup>3</sup>:





#### • Question 4:

A 355 cm<sup>3</sup> can of Coca-Cola<sup>®</sup> contains 39.0 g of sugar (formula,  $C_{12}H_{22}O_{11}$ ). Calculate the mole concentration of sugar in the can of Coca-Cola<sup>®</sup>.

• Step 3: Convert the 0.114 mol of  $C_{12}H_{22}O_{11}$  per 355 cm<sup>3</sup> into mol / dm<sup>3</sup>:

moles = concentration  $\times$  volume  $\times$  10<sup>-3</sup>

 $\therefore$  concentration = (moles  $\times$  1000)  $\div$  volume

concentration =  $(0.114 \times 1000) \div 355$ 

concentration = 0.321 mol / dm<sup>3</sup> (3 s.f.)



#### • Question 5:

The balanced chemical equation for the reaction between hydrochloric acid and sodium carbonate is given below:

 $2\text{HCl}(\text{aq}) + \text{Na}_2\text{CO}_3(\text{s}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$ 

Calculate the volume in dm<sup>3</sup> of CO<sub>2</sub>(g) produced when 50.0 cm<sup>3</sup> of 5.00 mol /dm<sup>3</sup> HCl(aq) reacts with excess Na<sub>2</sub>CO<sub>3</sub>(s).



#### • Question 5:

The balanced chemical equation for the reaction between hydrochloric acid and sodium carbonate is given below:

 $2\text{HCl}(\text{aq}) + \text{Na}_2\text{CO}_3(\text{s}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$ 

Calculate the volume in dm<sup>3</sup> of CO<sub>2</sub>(g) produced when 50.0 cm<sup>3</sup> of 5.00 mol /dm<sup>3</sup> HCl(aq) reacts with excess Na<sub>2</sub>CO<sub>3</sub>(s).

• Step 1: Calculate moles of HCI(aq) used.



#### • Question 5:

The balanced chemical equation for the reaction between hydrochloric acid and sodium carbonate is given below:

 $2\text{HCl}(\text{aq}) + \text{Na}_2\text{CO}_3(\text{s}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$ 

Calculate the volume in dm<sup>3</sup> of CO<sub>2</sub>(g) produced when 50.0 cm<sup>3</sup> of 5.00 mol /dm<sup>3</sup> HCl(aq) reacts with excess Na<sub>2</sub>CO<sub>3</sub>(s).

• Step 1: Calculate moles of HCI(aq) used.

moles of HCl(aq) used =  $c \times v \times 10^{-3}$ 

moles of HCl(aq) used =  $5.00 \times 50.0 \times 10^{-3}$ 

moles of HCI(aq) used = 0.250 mol



#### • Question 5:

The balanced chemical equation for the reaction between hydrochloric acid and sodium carbonate is given below:

 $2\text{HCl}(\text{aq}) + \text{Na}_2\text{CO}_3(\text{s}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$ 

Calculate the volume in dm<sup>3</sup> of CO<sub>2</sub>(g) produced when 50.0 cm<sup>3</sup> of 5.00 mol /dm<sup>3</sup> HCl(aq) reacts with excess Na<sub>2</sub>CO<sub>3</sub>(s).

• Step 2: Calculate moles of CO<sub>2</sub>(g) produced



#### • Question 5:

The balanced chemical equation for the reaction between hydrochloric acid and sodium carbonate is given below:

 $2\text{HCl}(\text{aq}) + \text{Na}_2\text{CO}_3(\text{s}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$ 

Calculate the volume in dm<sup>3</sup> of CO<sub>2</sub>(g) produced when 50.0 cm<sup>3</sup> of 5.00 mol /dm<sup>3</sup> HCl(aq) reacts with excess Na<sub>2</sub>CO<sub>3</sub>(s).

• Step 2: Calculate moles of CO<sub>2</sub>(g) produced

From the balanced chemical equation, 2 mol of HCl(aq) produce 1 mol of CO<sub>2</sub>(g),  $\therefore$  0.250 mol of HCl(aq) will produce  $1/2 \times 0.250 = 0.125$  mol of CO<sub>2</sub>(g)



#### • Question 5:

The balanced chemical equation for the reaction between hydrochloric acid and sodium carbonate is given below:

 $2\text{HCl}(\text{aq}) + \text{Na}_2\text{CO}_3(\text{s}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$ 

Calculate the volume in dm<sup>3</sup> of CO<sub>2</sub>(g) produced when 50.0 cm<sup>3</sup> of 5.00 mol /dm<sup>3</sup> HCl(aq) reacts with excess Na<sub>2</sub>CO<sub>3</sub>(s).

• Step 3: Calculate the volume of CO<sub>2</sub>(g) produced



#### • Question 5:

The balanced chemical equation for the reaction between hydrochloric acid and sodium carbonate is given below:

 $2\text{HCl}(\text{aq}) + \text{Na}_2\text{CO}_3(\text{s}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$ 

Calculate the volume in dm<sup>3</sup> of CO<sub>2</sub>(g) produced when 50.0 cm<sup>3</sup> of 5.00 mol /dm<sup>3</sup> HCl(aq) reacts with excess Na<sub>2</sub>CO<sub>3</sub>(s).

• Step 3: Calculate the volume of CO<sub>2</sub>(g) produced

volume of gas in  $dm^3 = moles \times 24$ 

volume of  $CO_2(g) = 0.125 \times 24$ 

volume of  $CO_2(g) = 3.00 \text{ dm}^3 (3 \text{ s.f.})$ 



#### • Question 6:

The balanced chemical equation for the reaction between iron(III) chloride and sodium hydroxide is given below:

 $FeCl_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3NaCl(aq)$ 

Calculate the mass of  $Fe(OH)_3(s)$  produced when 30.0 cm<sup>3</sup> of 2.00 mol / dm<sup>3</sup> NaOH(aq) reacts with an excess of FeCl<sub>3</sub>(aq).



#### • Question 6:

The balanced chemical equation for the reaction between iron(III) chloride and sodium hydroxide is given below:

 $FeCl_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3NaCl(aq)$ 

Calculate the mass of  $Fe(OH)_3(s)$  produced when 30.0 cm<sup>3</sup> of 2.00 mol / dm<sup>3</sup> NaOH(aq) reacts with an excess of FeCl<sub>3</sub>(aq).

• Step 1: Calculate moles of NaOH(aq) used.



#### • Question 6:

The balanced chemical equation for the reaction between iron(III) chloride and sodium hydroxide is given below:

 $FeCl_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3NaCl(aq)$ 

Calculate the mass of  $Fe(OH)_3(s)$  produced when 30.0 cm<sup>3</sup> of 2.00 mol / dm<sup>3</sup> NaOH(aq) reacts with an excess of FeCl<sub>3</sub>(aq).

• Step 1: Calculate moles of NaOH(aq) used.

moles of NaOH(aq) used =  $c \times v \times 10^{-3}$ 

moles of NaOH(aq) used =  $2.00 \times 30.0 \times 10^{-3}$ 

moles of NaOH(aq) used = 0.0600 mol



#### • Question 6:

The balanced chemical equation for the reaction between iron(III) chloride and sodium hydroxide is given below:

 $FeCl_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3NaCl(aq)$ 

Calculate the mass of  $Fe(OH)_3(s)$  produced when 30.0 cm<sup>3</sup> of 2.00 mol / dm<sup>3</sup> NaOH(aq) reacts with an excess of FeCl<sub>3</sub>(aq).

• Step 2: Calculate moles of Fe(OH)<sub>3</sub>(s) produced



#### • Question 6:

The balanced chemical equation for the reaction between iron(III) chloride and sodium hydroxide is given below:

 $FeCI_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3NaCI(aq)$ 

Calculate the mass of  $Fe(OH)_3(s)$  produced when 30.0 cm<sup>3</sup> of 2.00 mol / dm<sup>3</sup> NaOH(aq) reacts with an excess of FeCl<sub>3</sub>(aq).

• Step 2: Calculate moles of Fe(OH)<sub>3</sub>(s) produced

From the balanced chemical equation, 3 mol of NaOH(aq) produce 1 mol of Fe(OH)<sub>3</sub>(s),  $\therefore$  0.0600 mol of NaOH(aq) will produce  $\frac{1}{3} \times 0.0600 = 0.0200$  mol of Fe(OH)<sub>3</sub>(s)



#### • Question 6:

The balanced chemical equation for the reaction between iron(III) chloride and sodium hydroxide is given below:

 $FeCl_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3NaCl(aq)$ 

Calculate the mass of  $Fe(OH)_3(s)$  produced when 30.0 cm<sup>3</sup> of 2.00 mol / dm<sup>3</sup> NaOH(aq) reacts with an excess of FeCl<sub>3</sub>(aq).

• Step 3: Calculate the mass of Fe(OH)<sub>3</sub>(s) produced



#### • Question 6:

The balanced chemical equation for the reaction between iron(III) chloride and sodium hydroxide is given below:

 $FeCI_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3NaCI(aq)$ 

Calculate the mass of  $Fe(OH)_3(s)$  produced when 30.0 cm<sup>3</sup> of 2.00 mol / dm<sup>3</sup> NaOH(aq) reacts with an excess of FeCl<sub>3</sub>(aq).

• Step 3: Calculate the mass of  $Fe(OH)_3(s)$  produced mass in grams = moles ×  $M_r$ 

mass of  $Fe(OH)_3(s) = 0.0200 \times (56 + (3 \times (16 + 1)))$ 

mass of  $Fe(OH)_3(s) = 2.14 g (3 s.f.)$ 







Titration is a type of *quantitative analysis*. A known volume and concentration of solution
A is reacted with a known volume of solution
B in order to determine the concentration of solution B.

• For example, aqueous sulfuric acid reacts with aqueous potassium hydroxide according to the following balanced chemical equation:  $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}$ 

• If the concentration and volume of the aqueous sulfuric acid are known, and the volume of the aqueous potassium hydroxide is known, then the concentration of the aqueous potassium hydroxide can be calculated.



Titration is a type of *quantitative analysis*. A known volume and concentration of solution
A is reacted with a known volume of solution
B in order to determine the concentration of solution B.

• For example, aqueous sulfuric acid reacts with aqueous potassium hydroxide according to the following balanced chemical equation:  $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}$ 

• If the concentration and volume of the aqueous sulfuric acid are known, and the volume of the aqueous potassium hydroxide is known, then the concentration of the aqueous potassium hydroxide can be calculated.

### • Question 7:

25.00 cm<sup>3</sup> of a 0.300 mol / dm<sup>3</sup> solution of sulphuric acid were exactly neutralised by 45.00 cm<sup>3</sup> of aqueous potassium hydroxide. Calculate the concentration of the aqueous potassium hydroxide.

 $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$ 



### • Question 7:

25.00 cm<sup>3</sup> of a 0.300 mol / dm<sup>3</sup> solution of sulphuric acid were exactly neutralised by 45.00 cm<sup>3</sup> of aqueous potassium hydroxide. Calculate the concentration of the aqueous potassium hydroxide.

### $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$

• Step 1: Calculate the moles of H<sub>2</sub>SO<sub>4</sub>(aq) used:



### • Question 7:

25.00 cm<sup>3</sup> of a 0.300 mol / dm<sup>3</sup> solution of sulphuric acid were exactly neutralised by 45.00 cm<sup>3</sup> of aqueous potassium hydroxide. Calculate the concentration of the aqueous potassium hydroxide.

 $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$ 

• Step 1: Calculate the moles of H<sub>2</sub>SO<sub>4</sub>(aq) used:

moles =  $c \times v \times 10^{-3}$ 

moles of  $H_2SO_4$  used =  $0.30 \times 25.00 \times 10^{-3} = 0.0075$  mol



### • Question 7:

25.00 cm<sup>3</sup> of a 0.300 mol / dm<sup>3</sup> solution of sulphuric acid were exactly neutralised by 45.00 cm<sup>3</sup> of aqueous potassium hydroxide. Calculate the concentration of the aqueous potassium hydroxide.

### $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$

• Step 2: With reference to the balanced chemical equation, calculate the moles of KOH(aq) used:



### • Question 7:

25.00 cm<sup>3</sup> of a 0.300 mol / dm<sup>3</sup> solution of sulphuric acid were exactly neutralised by 45.00 cm<sup>3</sup> of aqueous potassium hydroxide. Calculate the concentration of the aqueous potassium hydroxide.

### $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$

• Step 2: With reference to the balanced chemical equation, calculate the moles of KOH(aq) used:

from the balanced chemical equation, 1 mol of  $H_2SO_4$ reacts with 2 mol of KOH



 $\therefore$  0.0075 mol of H<sub>2</sub>SO<sub>4</sub> reacts with <sup>2</sup>/<sub>1</sub> × 0.0075 = <u>0.015 mol</u> of KOH

### • Question 7:

25.00 cm<sup>3</sup> of a 0.300 mol / dm<sup>3</sup> solution of sulphuric acid were exactly neutralised by 45.00 cm<sup>3</sup> of aqueous potassium hydroxide. Calculate the concentration of the aqueous potassium hydroxide.

### $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$

 Step 3: Convert the 0.015 mol of KOH(aq) per 45.00 cm<sup>3</sup> into mol / dm<sup>3</sup>:



### • Question 7:

25.00 cm<sup>3</sup> of a 0.300 mol / dm<sup>3</sup> solution of sulphuric acid were exactly neutralised by 45.00 cm<sup>3</sup> of aqueous potassium hydroxide. Calculate the concentration of the aqueous potassium hydroxide.

### $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$

 Step 3: Convert the 0.015 mol of KOH(aq) per 45.00 cm<sup>3</sup> into mol / dm<sup>3</sup>:

there are  $0.015 \div 45.00 = 0.000333$  mol of KOH in 1.00 cm<sup>3</sup> of solution



∴ there are 0.000333 × 1000 = 0.333 mol of KOH in 1000 cm<sup>3</sup> of solution, *i.e.* 0.333 mol / dm<sup>3</sup> (3 s.f.)

### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_2O(I)$ 

22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).



### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_2O(I)$ 

22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).

• Step 1: Calculate moles of MnO<sub>4</sub><sup>-</sup>(aq) used:



### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_2O(I)$ 

22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).

• Step 1: Calculate moles of MnO<sub>4</sub><sup>-</sup>(aq) used:

moles =  $c \times v \times 10^{-3}$ 

moles of  $MnO_4^{-}(aq)$  used =  $0.0200 \times 22.0 \times 10^{-3}$ 

moles of  $MnO_4^{-}(aq)$  used = <u>0.000440</u> mol



### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_2O(I)$ 

- 22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).
- Step 2: With reference to the balanced chemical equation, calculate the moles of Fe<sup>2+</sup>(aq) used:



### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_2O(I)$ 

- 22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).
- Step 2: With reference to the balanced chemical equation, calculate the moles of Fe<sup>2+</sup>(aq) used:

from the balanced chemical equation, 1 mol of  $MnO_4^{-}(aq)$  reacts with 5 mol of Fe<sup>2+</sup>(aq),  $\therefore 0.000440$  mol of  $MnO_4^{-}(aq)$  react with  $\frac{5}{1} \times 0.000440$ = 0.00220 mol of Fe<sup>2+</sup>(aq)



### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_2O(I)$ 

- 22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).
  - Step 3: Convert the 0.00220 mol of Fe<sup>2+</sup>(aq) per 25.0 cm<sup>3</sup> into mol / dm<sup>3</sup>:



### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_2O(I)$ 

- 22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).
  - Step 3: Convert the 0.00220 mol of Fe<sup>2+</sup>(aq) per 25.0 cm<sup>3</sup> into mol / dm<sup>3</sup>:

there are  $0.00220 \div 25 = 0.0000880$  mol of Fe<sup>2+</sup>(aq) in 1.00 cm<sup>3</sup> of solution



:. there are  $0.0000880 \times 1000 = 0.0880$  mol of Fe<sup>2+</sup>(aq) in 1000 cm<sup>3</sup> of solution, *i.e.* <u>0.0880</u> mol / dm<sup>3</sup>

### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_2O(I)$ 

- 22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).
  - Step 4: Convert the mole concentration of Fe<sup>2+</sup>(aq) into a mass concentration for FeSO<sub>4</sub>(aq):



### • Question 8:

The balanced chemical equation for the reaction between aqueous manganate(VII) ions ( $MnO_4^-$ ) and aqueous iron(II) ions (Fe<sup>2+</sup>) is given below:

 $MnO_{4}^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_{2}O(I)$ 

- 22.0 cm<sup>3</sup> of 0.0200 mol / dm<sup>3</sup> MnO<sub>4</sub><sup>-</sup>(aq) were found to react exactly with 25.0 cm<sup>3</sup> of Fe<sup>2+</sup>(aq). Calculate the mass concentration in g / mol of Fe<sup>2+</sup>(aq) as FeSO<sub>4</sub>(aq).
  - Step 4: Convert the mole concentration of Fe<sup>2+</sup>(aq) into a mass concentration for FeSO<sub>4</sub>(aq):

mass in grams = moles  $\times M_r$ 

mass of  $FeSO_4 = 0.0880 \times (56 + 32 + (4 \times 16))$ 



mass of  $FeSO_4 = 13.376$  g *i.e.* 13.4 g / dm<sup>3</sup> (3 s.f.)

## Limiting Reagent

In a chemical reaction, what is meant by the term *limiting reagent*?






- 18 Research Chemists need to wear gloves in order to do an experiment.
- 32 gloves (assume equal numbers of left and right) are available.
  - How many chemists wear a pair of gloves?
  - How many chemists are without a pair of gloves?
    - How many gloves are left-over?
      - What is available in excess?
        - What is the limiting factor?



- 18 Research Chemists need to wear gloves in order to do an experiment.
- 32 gloves (assume equal numbers of left and right) are available.
  - How many chemists wear a pair of gloves? 16.
  - How many chemists are without a pair of gloves? 2.
  - How many gloves are left-over? 0.
- What is available in excess? Chemists.
  - What is the limiting factor? Gloves.



- 15 Research Chemists need to wear gloves in order to do an experiment.
- 44 gloves (assume equal numbers of left and right) are available.
  - How many chemists wear a pair of gloves?
  - How many chemists are without a pair of gloves?
    - How many gloves are left-over?
      - What is available in excess?
        - What is the limiting factor?



- 15 Research Chemists need to wear gloves in order to do an experiment.
- 44 gloves (assume equal numbers of left and right) are available.
  - How many chemists wear a pair of gloves? 15.
  - How many chemists are without a pair of gloves? 0.
- How many gloves are left-over? 14.
- What is available in excess? Gloves.
- What is the limiting factor? Chemists.

• Sometimes, when two reagents are mixed together in the laboratory, one reagent may be added in *excess* while the other reagent will *limit* the amount of reaction product that is formed.

• The reagent that limits the amount of reaction product formed is known as the *limiting reagent*.





 Consider the reaction between aqueous iron(III) chloride and aqueous sodium hydroxide:

 $\text{FeCl}_{3(aq)}$  +  $3\text{NaOH}_{(aq)} \rightarrow \text{Fe(OH)}_{3(s)}$  +  $3\text{NaCl}_{(aq)}$ 

 In a reaction, 2 mol of FeCl<sub>3(aq)</sub> are added to 5 mol of NaOH<sub>(aq)</sub>. What is the limiting reagent?





 Consider the reaction between aqueous iron(III) chloride and aqueous sodium hydroxide:

 $\text{FeCl}_{3(aq)}$  +  $3\text{NaOH}_{(aq)} \rightarrow \text{Fe(OH)}_{3(s)}$  +  $3\text{NaCl}_{(aq)}$ 

 In a reaction, 2 mol of FeCl<sub>3(aq)</sub> are added to 5 mol of NaOH<sub>(aq)</sub>. What is the limiting reagent?

• According to the balanced chemical equation, 1 mol of  $\text{FeCl}_{3(aq)}$  reacts with 3 mol of  $\text{NaOH}_{(aq)}$ . Therefore 2 mol of  $\text{FeCl}_{3(aq)}$  will react with 2 × 3 = 6 mol of  $\text{NaOH}_{(aq)}$ . However, only 5 mol of  $\text{NaOH}_{(aq)}$  are available, therefore  $NaOH_{(aq)}$  is the limiting reagent.











 Chemical reactions can be used to determine the *percentage composition* of a mixture. For example, the percentage calcium carbonate (formula, CaCO<sub>3</sub>) in a rock sample can be determined by titration.





 A rock discovered on the surface of Mars is known to be a mixture of calcium carbonate and an inert mineral.

 5.00 g of the rock is weighed out and powdered. The calcium carbonate in the rock is found to react exactly with 70.0 cm<sup>3</sup> of 1.00 mol / dm<sup>3</sup> hydrochloric acid.

• What percentage of the rock, by mass, is calcium carbonate?



• Step 1: Write a balanced chemical equation for the reaction between calcium carbonate and hydrochloric acid.





• Step 1: Write a balanced chemical equation for the reaction between calcium carbonate and hydrochloric acid.

 $CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O_{(l)} + CO_{2(g)}$ 



• Step 1: Write a balanced chemical equation for the reaction between calcium carbonate and hydrochloric acid.



 $CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O_{(I)} + CO_{2(g)}$ 

• Step 2: Calculate the number of moles of hydrochloric acid used.



• Step 1: Write a balanced chemical equation for the reaction between calcium carbonate and hydrochloric acid.



 $CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O_{(I)} + CO_{2(g)}$ 

• Step 2: Calculate the number of moles of hydrochloric acid used.

moles = concentration  $\times$  volume  $\times$  10<sup>-3</sup> moles HCl(aq) = 1.00  $\times$  70.0  $\times$  10<sup>-3</sup> moles of HCl(aq) = 0.070 mol











 Step 3: Calculate the number of moles of calcium carbonate that react with 0.070 mol of hydrochloric acid.

From the balanced chemical equation, 2 mol of HCl(aq) react with 1 mol of CaCO<sub>3</sub>(s).

Therefore 0.070 mol of HCl(aq) will react with  $0.070 \times 1/2 = 0.035 \text{ mol CaCO}_3(s)$ 



• Step 4: Calculate the mass in grams of calcium carbonate present in 0.035 mol.







• Step 4: Calculate the mass in grams of calcium carbonate present in 0.035 mol.

 $M_r \text{ of } CaCO_3(s) = 40.0 + 12.0 + (3 \times 16.0) = 100$ 

mass in grams =  $M_r \times$  number of moles

mass of  $CaCO_3(s) = 100 \times 0.035$ = 3.50 g





• Step 5: Express the 3.50 g of calcium carbonate as a percentage of the 5.00 g rock.





• Step 5: Express the 3.50 g of calcium carbonate as a percentage of the 5.00 g rock.

percentage CaCO<sub>3</sub>(s) in the rock =  $(3.50 \div 5.00) \times 100$ =  $\underline{70.0}$  % (3 s.f.)





• Not all chemical reactions go to completion, *i.e.* not all chemical reactions produce as much product as the amount calculated in theory.





• Not all chemical reactions go to completion, *i.e.* not all chemical reactions produce as much product as the amount calculated in theory.

 For example, if a reaction that is calculated to produce 80.0 g of reaction product only produces 60.0 g of reaction product, then the percentage yield of the reaction is:





• Not all chemical reactions go to completion, *i.e.* not all chemical reactions produce as much product as the amount calculated in theory.

 For example, if a reaction that is calculated to produce 80.0 g of reaction product only produces 60.0 g of reaction product, then the percentage yield of the reaction is:

> (experimental yield  $\div$  theoretical yield)  $\times$  100 (60.0  $\div$  80.0)  $\times$  100 = 75.0 %



#### **Concentration of Aqueous Solution**

Could I please have a summary of the *formulae* that are used for *mole calculations*?



## Summary of Mole Concept





#### **Concentration of Aqueous Solution**

Presentation on Concentration of Aqueous Solution by Dr. Chris Slatter christopher\_john\_slatter@nygh.edu.sg

#### Nanyang Girls' High School

2 Linden Drive Singapore 288683

31<sup>st</sup> July 2015







